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1 Problem

The (time-dependent) electromagnetic field energy in vacuum (or in a medium where D = E
and B = H) is given as

UEM =
∫ E2 + B2

8π
dVol, (1)

in Gaussian units. Here, D is the electric displacement vector, E is the electric field, B is
the magnetic induction, and H is the magnetic field.

In static situations the electromagnetic energy can also be expressed in terms of sources
and potentials as

UEM =
1

2

∫ (
ρφ +

J ·A
c

)
dVol, (2)

where ρ is the charge density, J is the current density, φ is the scalar potential and A is the
vector potential.

Time-dependent electromagnetic fields include radiation fields that effectively decouple
from the sources. Verify that the expression (1) cannot in general be transformed into
expression (2).

The Lorentz invariant quantity E2 −B2 vanishes for radiation fields. Hence the integral

∫
(E2 −B2)dVol (3)

excludes the contribution from the radiation fields, and remains related to the sources of
the fields. Show that eq. (3) can be transformed into an integral of the invariant (j · A) =
cρφ− J ·A plus the time derivative of another integral.

The quantity E2 −B2 has the additional significance of being the Lagrangian density of
the “free” electromagnetic field [1], while ρφ−J ·A/c is also considered to be the interaction
term in the Lagrangian between the field and sources. The above argument indicates that
the “free” fields retain a kind of memory of their sources, as they must.

2 Solution

The aspects of this problem related to E2 −B2 were suggested by J.D. Jackson.
To bring the potentials into the field energy (1), we recall that since ∇ · B = 0 always,

the magnetic induction can always be related to a vector potential A according to

B = ∇×A. (4)
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Faraday’s law can therefore be written as

∇× E = −1

c

∂B

∂t
= −∇× 1

c

∂A

∂t
. (5)

Thus, the curl of the quantity

E +
1

c

∂A

∂t
(6)

vanishes, which means that this quantity can be expressed as −∇φ where φ is a scalar
potential. That is, the electric field can be written in terms of potentials as

E = −∇φ− 1

c

∂A

∂t
. (7)

Inserting expression (7) into the electric part of eq. (1), we find

UE =
1

8π

∫
E2 dVol = − 1

8π

∫
E · ∇φ dVol− 1

8πc

∫
E · ∂A

∂t
dVol

= − 1

8π

∫
∇ · (φE) dVol +

1

8π

∫
φ∇ · E dVol− 1

8πc

∫
εE · ∂A

∂t
dVol

= − 1

8π

∫
φD · dS +

1

2

∫
ρφ dVol− 1

8πc

∫
E · ∂A

∂t
dVol (8)

using the Maxwell equation,
∇ · E = 4πρ. (9)

Likewise, the magnetic energy can be written

UM =
1

8π

∫
B2 dVol =

1

8π

∫
B · ∇ ×A dVol

= − 1

8π

∫
∇ ·B×A dVol +

1

8π

∫
A · ∇ ×B dVol

= − 1

8π

∫
B×A · dS +

1

2c

∫
J ·A dVol +

1

8πc

∫
A · ∂E

∂t
dVol, (10)

using the Maxwell equation

∇×B =
4π

c
J +

1

c

∂E

∂t
. (11)

For charges and current that occupy only a finite volume, the surface integrals in eqs. (8)
and (10) go to zero as the surface becomes large. To see this, first suppose that there are no
wave fields, so the potentials fall off at least as fast as 1/r, and the quasistatic fields fall off
at least as fast as 1/r2. Since the surface area increases as r2, the surface integrals fall off as
1/r and can be neglected. If there are wave fields, then for large enough r, the leading terms
of A, E and B are all orthogonal to the surface vector dS and again the surface integrals can
be neglected. An alternative justification for neglecting these integrals is given by Stratton
[2].

Thus, the electromagnetic field energy can be written as

UEM = UE + UM =
1

2

∫ (
ρφ +

J ·A
c

)
dVol +

1

8πc

∫ (
A · ∂E

∂t
− E · ∂A

∂t

)
dVol. (12)
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The second integral in eq. (12) can be transformed in various ways, but in general it is
nonzero. The time-dependent electromagnetic energy (1) includes additional physical effects,
the radiation fields, not accounted for in the expression (2).

The difference between the electric and the magnetic energies, in which contributions
from radiation fields cancel, is

UE − UM =
∫ E2 −B2

8π
dVol

=
1

2

∫ (
ρφ− J ·A

c

)
dVol− 1

8πc

∫ (
A · ∂E

∂t
+ E · ∂A

∂t

)
dVol

=
1

2c

∫
(j · A) dVol− 1

8πc

d

dt

∫
A · E dVol, (13)

where j = (cρ,J) is the 4-vector current density and A = (φ,A) is the 4-potential.
Since both E2 − B2 and (j · A) are Lorentz invariants, it should be possible to write

dA ·E/dt in an invariant form also. Indeed, that can be done using the covariant derivative

∂ =

(
d

cdt
,−∇

)
, (14)

and the time-like unit vector n whose components in the lab frame are

n = (1, 0, 0, 0). (15)

Then,
dA · E

dt
= c(n · ∂)

[
(n · ∂)

(
A · A

2

)
− (A · ∂)(n · A)

]
, (16)

for what it’s worth.

3 References

[1] See, for example, J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York,
1998).

[2] J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 134.

3


